Fault Analysis with Coupon Collector's Problem

Yu Sasaki¹, Yang Li², Hikaru Sakamoto², and Kazuo Sakiyama²

- 1: NTT Corporation
- 2: University of Electro-Communications

Coupon Collector's Problem (CCP)

Definition

For each coupon drawing event, 1 random coupon is obtained.

How many events are expected to complete all coupons?

 $n \ln(n)$

CCP can be applied to the fault attack.

Motivation

Primary motivation

Motivation

Primary motivation

fun!!

Motivation

Primary motivation

Byproduct:

Assumption for the fault injection can be more realistic (noise is acceptable).

The Last 4 Rounds of AES

SQUARE DFA [PhanYin06]

Collect all values by fault injections.

SQUARE DFA [PhanYin06]

Collect all values by fault injections.

SQUARE DFA [PhanYin06]

The key K_{10} is guessed column by column.

Each guess is a right key candidate with prob.:

$$\left(\prod_{i=0}^{255} \frac{(256-i)}{256}\right)^4$$

The correct key is recovered.

Improved SQUARE DFA [Kim11]

256 values are not necessary. α values are enough.

Each guess is a right key candidate with prob:

$$\left(\prod_{i=0}^{\alpha-1} \frac{(256-i)}{256}\right)^4$$

The probability is smaller than 2^{-32} for $\alpha = 45$.

Noisy Fault Model

- Previous SQUARE DFAs assume that unintended fault never occurs.
- But, in practice, noise is obtained.

We can still recover the key!!

Our Attacks

- α : the number of distinct fault values
- *n*: the total number of texts to be analyzed

For the correct guess at least α distinct values appear, otherwise, the guess is wrong.

What's the probability?

Probability Estimation with CCP

• Suppose that α = 256. Each guess is a right key candidate if all 256 values are completed after n trials.

- equivalent to the CCP. $Pr=2^{-1}$ even if n=1553.
- For α < 256, it becomes a variant of the CCP.

Probability Estimation with CCP

$$\binom{\beta}{\alpha} \binom{\alpha}{1} \sum_{i=\alpha}^{n} \frac{Q(\alpha-1, i-1)}{\beta^{i}}$$

Conclusion

- We generalized the SQUARE DFA so that the noisy fault injection can be accepted.
- We did the probability estimation with the coupon collector's problem.
- The paper will appear at FC2013.

Thank you for your attention !!